ISSN:0974-8652 / www.ijcmi.webs.com / VOL 2-NO1-PP 6-12 (2010)

A NOTE ON r-partitions of n in which the least part is k

K.Hanuma Reddy®

Lecturer in mathematics, Hindu College, Guntur, A.P-522002, India, Mail: hanumareddy_k@yahoo.com

ABSTRACT

Partitions play an important role in Number Theory. It has wide applications in various fields. An attempt is made to develop a theorem on the number of r - partitions of positive integer n in which the least part is k, a reduction theorem on r - partitions and some more results on r - partitions are derived.

Key words: p(n), r-partitions, $p_r(n)$, $p_r(e;n)$, $p_r(o;n)$ and $p_r(S;n)$ **Subject classification:** 11P81 Elementary theory of partitions.

1. Introduction:

1.1 Partition: A partition of a positive integer n is a finite sequence of non-increasing positive

integers
$$\lambda_1$$
, λ_2 , ..., λ_r such that $\sum_{i=1}^r \lambda_i = n$

The number λ_i is called the i^{th} part of the partition. The partition is also denoted as $n = (\lambda_1, \lambda_2, ..., \lambda_r)$.

- 1.2 Partition function: The partition function p(n) is the number of partitions of n.
- 1.3 r-partition: A partition containing r parts is called r partitions.
- 1.4 $p_r(n)$: $p_r(n)$ is the number of r partitions of a positive integer n.

Note: $p(n) = p_1(n) + p_2(n) + ... + p_n(n)$

- 1.5 $p_r(o;n)$: $p_r(o;n)$ is the number of partitions of a positive integer n having r parts in which each part is odd number.
- 1.6 $p_r(e;n)$: $p_r(e;n)$ is the number of partitions of a positive integer n having r parts in which each part is even number.

1.7 $p_r(S;n): p_r(S;n)$ is the number of partitions of a positive integer n having r parts in which each part is the element of the set S.

2. Theorem: Let $r, n \in N(r \le n)$ and $S = \{am + b \mid a \in N, b \in Z \text{ and } m = 1, 2, ..., n\}$ be the set of positive integers. If $a \mid n - br$, then

$$p_r(S;n) = p_r\left(\frac{n-br}{a}\right)$$
 other wise $p_r(S;n) = 0$.

[2.1]

Proof: All parts in r – partitions of n multiplied by a and added by b to get the partitions of n whose parts are elements of S.

3. Theorem: Let $r, n \in N$ and

$$S = \{am + b \mid a \in N, b \in Z \text{ and } m = 1, 2, ..., n\}$$

be the set of positive integers. Then, the highest least part of r-partiions of n in which the parts are the elements of the set S is

$$a\left[\frac{n}{ar+b}\right]+b$$

Proof: Let λ_1 , λ_2 , ..., λ_r be the first, second,...,

 r^{th} parts of the r-partition of 'n' respectively. So $n = (\lambda_1, \lambda_2, ..., \lambda_r)$

All the distinct r-partiions of n are arranged in such a way that all the parts and corresponding parts in each r-partiions are monotonically increasing.

If possible, let
$$\lambda_1 = \left\{ a \left\lceil \frac{n}{ar+b} \right\rceil + b \right\} + 1$$

Since all the parts in each r-partitions are monotonically increasing order, the least possible value of each λ_i for i=2 to r is

$$\left\{a\left\lceil\frac{n}{ar+b}\right\rceil+b\right\}+1.$$

Then the sum of all parts in partition is

$$r\left\{\left\{a\left[\frac{n}{ar+b}\right]+b\right\}+1\right\}.$$

But
$$r\left\{\left\{a\left[\frac{n}{ar+b}\right]+b\right\}+1\right\} > n$$

This is contradiction.

Hence
$$\lambda_1 = a \left[\frac{n}{ar + b} \right] + b$$
 is the highest integer.

4. Theorem: Let $r, n \in N$ and $S = \{am + b \mid a \in N, b \in Z \text{ and } m = 1, 2, ..., n\}$ be the set of positive integers. Then prove that $p_r(S; n) - p_{r-1}(S; n - \{a(1) + b\})$

$$p_r(S; n) - p_{r-1}(S; n - \{a(1) + b\})$$

$$= p_r(S; n - ar)$$
[4.1]

Proof:

The number of r-partitions of n whose parts are elements of S with least part a(1)+b is equal to the number of (r-1)-partitions of $n-\{a(1)+b\}$ whose parts are elements of S and the number of r-partitions of n whose parts are elements of S with least part is not a(1)+b is equal to the number of r-partitions of n-ar whose parts are elements of S.

$$\therefore p_r(S; n) - p_{r-1} \left(S; n - \left\{ a \left(1 \right) + b \right\} \right)$$

$$= p_r(S; n - ar)$$

5. Theorem: Let $r, n, k \in N$ and $S = \{am + b \mid a \in N, b \in Z \text{ and } m = 1, 2, ..., n\}$ be the set of positive integers. then, the number of r - partitions of n having the parts are elements of S with least part k is

$$p_{r-1}\left(S; n - \left(k - 1\right)ar - \left\{a + b\right\}\right)$$
where $1 \le k \le \left\lceil \frac{n}{ar + b} \right\rceil$

[5.1]

Proof: Let λ_1 , λ_2 , ..., λ_r be the first, second....

 r^{th} parts of the r-partiions of n respectively.

$$n = (\lambda_1, \lambda_2, \dots, \lambda_r)$$

All the distinct r-partitions of n are arranged in such a way that all the parts and corresponding parts in each r-partitions are monotonically increasing.

Fixing $\lambda_1 = a(1) + b$, the remaining value $n - \{a(1) + b\}$ of n can be expressed as the sum of the remaining r - 1 parts $\lambda_2, \lambda_3, \dots, \lambda_r$ in $p_{r-1}(S; n - \{a(1) + b\})$ ways.

i,e The number of r - partitions in which the least part of the partition is $\lambda_1 = a(1) + b$ is

$$p_{r-1}\left(S; n-\left\{a+b\right\}\right).$$

Fixing $\lambda_1 = a(2) + b$, the remaining value $n - \{a(2) + b\}$ of n can be expressed as the sum of the remaining r-1 parts $\lambda_2, \lambda_3, \ldots, \lambda_r$ in $p_{r-1}(S; n - \{a(2) + b\})$ ways. Since all the parts in each r-partition are non decreasing, $p_{r-2}(S; n - \{a(3) + b(2)\})$ r-partitions with $\lambda_1 = a(2) + b$, $\lambda_2 = a(1) + b$ are to be eliminated from $p_{r-1}(S; n - \{a(2) + b\})$ r-partitions. Then, the number of the r-partitions in which the

least part of the partition $\lambda_1 = a(2) + b$ is

$$p_{r-1}\left(S; n-\left\{a\left(2\right)+b\right\}\right)$$

$$p_{r-2}(S; n - \{a(3) + b(2)\})$$

$$= p_{r-1}(S; n - a(r-1) - \{a(2) + b\})$$

$$= p_{r-1}(S; n - ar - \{a + b\})$$

Fixing $\lambda_1 = a(3) + b$, the remaining value $n - \{a(3) + b\}$ of n can be expressed as the sum of the remaining r - 1 parts $\lambda_2, \lambda_3, \dots, \lambda_r$ in $p_{r-1}(S; n - \{a(3) + b\})$ ways.

$$p_{r-2}(S; n - \{a(4) + b(2)\})$$
 $r - partitions$ with $\lambda_1 = a(3) + b$, $\lambda_2 = a(1) + b$ and $p_{r-2}(S; n - \{a(5) + b(2)\})$

$$p_{r-3}(S; n-\{a(6)+b(3)\})$$

r-partitions with $\lambda_1 = a(3) + b$, $\lambda_2 = a(2) + b$ are to be eliminated

from
$$p_{r-1}(S; n-\{a(3)+b\})$$
 $r-partitions$.

Then, the number of the r-partitions in which the least part of the partition $\lambda_1 = a(3) + b$ is

$$p_{r-1}(S; n - \{a(3) + b\})$$

$$-p_{r-2}(S; n - \{a(4) + b(2)\})$$

$$-p_{r-2}(S; n - \{a(5) + b(2)\})$$

$$-p_{r-3}(S; n - \{a(6) + b(3)\})$$

$$= p_{r-1}(S; n - a(r-1) - \{a(3) + b\})$$

$$-p_{r-2}(S; n - a(r-2) - \{a(5) + b\})$$

$$= p_{r-1}(S; n - ar - \{a(2) + b\})$$

$$-p_{r-2}(S; n - ar - \{a(3) + b\})$$

$$= p_{r-1}(S; n - a(r-1) - ar - \{a(2) + b\})$$

$$= p_{r-1}(S; n - a(r-1) - ar - \{a(2) + b\})$$

$$= p_{r-1}(S; n - 2ar - \{a + b\})$$

By induction we observe that the number of r - partitions of n having the parts are elements of S with least part k is

$$p_{r-1}(S; n-(k-1)ar - \{a+b\})$$

where
$$1 \le k \le \left[\frac{n}{ar+b}\right]$$

Corollary 5.1: Let $n, r, k \in N$. Then the number of r - partitions of n with least part k is

$$p_{r-1} \left[n - (k-1)r - 1 \right]$$
 where $0 \le k \le \left\lceil \frac{n}{r} \right\rceil$

Proof: Put a = 1, b = 0 in [5.1]

Corollary 5.2: Let $n, r, k \in N$. Then, the number of r - partitions of n having the parts are even numbers with least part k is

$$p_{r-1}[e; n-2(k-1)r-2]$$
 where $0 \le k \le \left\lceil \frac{n}{2r} \right\rceil$

Proof: Put a = 2, b = 0 in [5.1]

Corollary 5.3: Let $n, r, k \in N$. Then the number of r – partitions of n having the parts are odd numbers with least part k is

$$p_{r-1} \left[o; n-2(k-1)r-1 \right]$$
where $0 \le k \le \left[\frac{n}{2r-1} \right]$

Proof: Put a = 2, b = -1 in [5.1]

6. Reduction theorem for $p_r(S;n)$:

Let $r, n, k \in N$ and

 $S = \{am + b \mid a \in N, b \in Z \text{ and } m = 1, 2, ..., n\}$

be the set of positive integers. then,

$$p_r(\mathbf{S};n) = \sum_{k=1}^{\left[\frac{n}{ar+b}\right]} p_{r-1}\left(S;n-\left(k-1\right)ar - \left\{a+b\right\}\right)$$

[6.1] and

$$p(S;n) = \sum_{r=1}^{n} \sum_{k=1}^{\left[\frac{n}{ar+b}\right]} p_{r-1}(S;n-(k-1)ar - \{a+b\})$$

[6.2]

Proof: From [5.1] we can observe it

Corollary 6.1: Prove that

$$p(n) = \sum_{r=1}^{n} \sum_{k=1}^{\left[\frac{n}{r}\right]} p_{r-1} \left(n - (k-1)r - 1 \right)$$

Proof: Put a = 1, b = 0 in [6.2]

Corollary 6.2: Prove that

$$p(e;n) = \sum_{r=1}^{n} \sum_{k=1}^{\left[\frac{n}{2r}\right]} p_{r-1} \left(e; n-2(k-1)r-2\right)$$

Proof: Put a = 2, b = 0 in [6.2]

Corollary 6.3: Prove that

$$p(o;n) = \sum_{r=1}^{n} \left[\sum_{k=1}^{\frac{n}{2r-1}} p_{r-1}(o;n-2(k-1)r-1) \right]$$

Proof: Put a = 2, b = -1 in [6.2]

Theorem 7: If $r, n \in N$ and r < n, then

$$p_r(n) = p(n-r)$$
 for $\frac{n}{r} \le 2$

Proof:

Case:1 Let
$$\frac{n}{r} = 2$$

$$\Rightarrow n = 2r$$

$$p_r(n) = p_1(n-r) + p_2(n-r) + ... + p_r(n-r)$$

$$= p_1(r) + p_2(r) + ... + p_r(r)$$

$$= p(r)$$

$$= p(n-r)$$
Case:2 Let $\frac{n}{r} < 2$

Since
$$r < n$$
 and $\frac{n}{r} < 2$

$$\Rightarrow r < n < 2r$$

$$\Rightarrow 0 < n - r < n$$

$$p_r(n) = p_1(n-r) + p_2(n-r) + ...$$

$$+ p_{n-r}(n-r) + p_{n-r+1}(n-r) + ... + p_r(n-r)$$

$$= p_1(n-r) + p_2(n-r) + ...$$

$$+ p_{n-r}(n-r) + 0 + ... + 0$$

$$= p(n-r)$$

Hence $p_r(n) = p(n-r)$ for $\frac{n}{r} \le 2$

Theorem 8: Let $n, i, j \in N$, then

$$p(n) = 1 + \sum_{i+j=2}^{n} p_i(j)$$

Proof: Case 1: Let
$$n = 2m$$
 for $m \in N$

$$p(n) = p(2m)$$

$$= p_1(2m) + p_2(2m) + p_3(2m) + ...$$

$$+ p_{m-1}(2m) + p_m(2m) + p_{m+1}(2m) + ...$$

$$+ p_{2m-2}(2m) + p_{2m-1}(2m) + p_{2m}(2m)$$

$$= \{p_1(2m-1)\}$$

$$+ \{p_1(2m-2) + p_2(2m-2)\}$$

$$+ \{p_1(2m-3) + p_2(2m-3) + p_3(2m-3)\} + ...$$

$$+ \{p_1(m+1) + p_2(m+1) + ... + p_{m-1}(m+1)\}$$

$$+ p(m) + p(m-1) + ... + p(2) + p(1) + 1$$

$$= \{p_1(2m-1)\}$$

$$+ \{p_1(2m-2) + p_2(2m-2)\}$$

$$+ \{p_1(2m-3) + p_2(2m-3) + p_3(2m-3)\} + ...$$

$$+ \{p_1(m+1) + p_2(m+1) + ... + p_{m-1}(m+1)\}$$

$$+ \{p_1(m) + p_2(m) + ... + p_{m-1}(m)\}$$

$$+ \{p_1(m) + p_2(m) + ... + p_{m-1}(m-1)\} + ...$$

$$+ \{p_1(3) + p_2(3) + p_3(3)\}$$

$$+ \{p_1(2) + p_2(2)\} + p_1(1) + 1$$

$$= 1 + \sum_{i+j=2}^{2m} p_i(j) + \sum_{i+j=2}^{2m} p_i(j) + ...$$

$$+ \sum_{i+j=3} p_i(j) + \sum_{i+j=2} p_i(j)$$

$$= 1 + \sum_{i+j=2}^{2m} p_i(j) + \sum_{i+j=2}^{2m-1} p_i(j) + ...$$

$$+ p_{m+1}(2m+1) + p_{m+2}(2m+1) + ...$$

$$+ p_{m+1}(2m+1) + p_{m+2}(2m+1) + ...$$

$$+ p_{2m-1}(2m+1) + p_{2m}(2m+1) + ...$$

$$= \{p_{l}(2m)\} \\ + \{p_{l}(2m-1) + p_{2}(2m-1)\} \\ + \{p_{l}(2m-2) + p_{2}(2m-2) + p_{3}(2m-2)\} + \dots \\ + \{p_{l}(m+1) + p_{2}(m+1) + \dots + p_{m}(m+1)\} + \\ p(m) + p(m-1) + \dots + p(m+1)\} + \\ p(m) + p(m-1) + \dots + p(2) + p(1) + 1 \\ = \{p_{l}(2m)\} \\ + \{p_{l}(2m-1) + p_{2}(2m-2) + p_{3}(2m-2)\} + \dots \\ + \{p_{l}(2m-1) + p_{2}(2m-2) + p_{3}(2m-2)\} + \dots \\ + \{p_{l}(2m-2) + p_{2}(2m-2) + p_{3}(2m-2)\} + \dots \\ + \{p_{l}(m+1) + p_{2}(m+1) + \dots + p_{m}(m+1)\} \\ + \{p_{l}(m+1) + p_{2}(m+1) + \dots + p_{m}(m+1)\} \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m}(m)\} \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m}(m)\} \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + \dots + p_{m-1}(m-1)\} + \dots \\ + \{p_{l}(m) + p_{2}(m) + p_{2}(m) + \dots + p_{m-1}(m)\} \\ = 1 + p_{m-1}(2m + m - 1) + \{p(1) + p(2) + \dots + p(m)\} \\ = 1 + p_{m-1}(2m + m - 1) + \{p(1) + p(2) + \dots + p(m)\} \\ = 1 + p_{m-1}(2m + m - 1) + \{p(1) + p(2) + \dots + p(m)\} \\ = 1 + p_{m-1}(2m + m - 1) + \{p(1) + p(2) + \dots + p(m)\} \\ = 1 + p_{m-1}(3m - 1) + \sum_{i=1}^{m} p_i(i)$$

If n is odd

Let $n = 2m + 1$ for $m \in N$

$$p(n) = p_{l}(n) + p_{2}(n) + \dots + p_{m-1}(n) \\ + p_{m}(n) + p_{m+1}(n) + p_{m+2}(n) + \dots \\ + p_{2m-1}(n) + p_{2m}(n) + p_{2m+1}(n)$$

Hence $p(n) = 1 + \sum_{i=j=2}^{n} p_{i}(j)$

$$= p_{l}(2m + 1) + p_{2}(2m + 1) + \dots + p_{m}(2m + 1) + \dots \\ + p_{2m-1}(2m + 1) + p_{2m}(2m + 1) + \dots \\ + p_{2m-1}(2m + 1) + p_{2m}(2m + 1) + \dots \\ + p_{m+1}(2m + 1) + p_{m+1}(2m + 1) + \dots \\ + p_{m+1}(2m + 1) + p_{m+1}(2m + 1) + \dots \\ + p_{m+1}(2m) + p_{m+1}(2m) + \dots \\ + p_{m+1}(2m) + p_{$$

Proof: Since
$$p(n) = 1 + \sum_{i+j=2}^{n} p_i(j)$$

 $\therefore p(n-1) = 1 + \sum_{i+j=2}^{n-1} p_i(j)$
Hence $p(n) - p(n-1) = \sum_{i+j=n} p_i(j)$

Theorem 9: If $n \in N$ then

$$p(n) = \begin{cases} \frac{1 + p_{\frac{n}{2} - 1}}{\frac{2}{2}} \left(\frac{3n}{2} - 1\right) + \sum_{i=1}^{\frac{n}{2}} p(i) & \text{when } n \text{ is even} \end{cases}$$

$$\frac{1 + p_{\frac{n-1}{2}}}{\frac{2}{2}} \left(\frac{3n - 1}{2}\right) + \sum_{i=1}^{\frac{n-1}{2}} p(i) & \text{when } n \text{ is odd} \end{cases}$$

Proof:

If n is even

Let n = 2m for $m \in N$

$$p(n) = p_1(n) + p_2(n) + ... + p_{m-1}(n) + p_m(n)$$

$$+ p(2) + p(1) + 1$$

$$= 1 + p_m(3m+1) + \sum_{i=1}^{m} p(i)$$

$$= 1 + p_{n-1} \left(\frac{3n-1}{2}\right) + \sum_{i=1}^{n-1} p(i)$$
Hence

$$p(n) = \begin{cases} \frac{1 + p_{\frac{n}{2} - 1}}{\frac{2}{2} - 1} \left(\frac{3n}{2} - 1 \right) + \sum_{i=1}^{\frac{n}{2}} p(i) & \text{when } n \text{ is even} \\ \frac{1 + p_{\frac{n-1}{2}}}{\frac{2}{2}} \left(\frac{3n-1}{2} \right) + \sum_{i=1}^{\frac{n-1}{2}} p(i) & \text{when } n \text{ is odd} \end{cases}$$

Theorem 10:

If
$$\left[\frac{m}{r}\right] = 1$$
, then $\left[\frac{m+1}{r+1}\right] = 1$ for $m, r \in \mathbb{Z}$

Proof: Since
$$\left[\frac{m}{r}\right] = 1$$

 $\Rightarrow r \le m < 2r$
 $\Rightarrow r + 1 \le m + 1 < 2r + 1$

Since
$$r+1 \le m+1 < 2r+1$$
 and $2r+1 \le 2r+2$
 $\therefore r+1 \le m+1 < 2r+2$
 $\Rightarrow 1 \le \frac{m+1}{r+1} < 2$
 $\Rightarrow \left[\frac{m+1}{r+1}\right] = 1$
Hence $\left[\frac{m}{r}\right] = 1 \Rightarrow \left[\frac{m+1}{r+1}\right] = 1$ for $m, r \in \mathbb{Z}$
Theorem 11: If $\left[\frac{m}{r}\right] = 1$, then
 $p_r(m) + p_r(m+r+1) + ... + p_r(m+tr+t)$
 $= p_{r+1}(m+tr+t)$

Proof: Let t = 1

Since
$$\left[\frac{m}{r}\right] = 1$$

$$\left[\frac{m+r+1+1}{r+1}\right] = \left[\frac{m+1}{r+1} + \frac{r+1}{r+1}\right] = [1+1] = 2$$

$$p_{r+1}(m+r+1+1) = p_r(m+r+1)$$

$$+ [p_r(m+r) - p_r(m+r-1)]$$

$$= p_r(m+r+1) + p_r(m+r-r)$$

$$= p_r(m+r+1) + p_r(m)$$

We assume that it is true for t = sThere fore

$$p_r(m) + p_r(m+r+1) + ... + p_r(m+sr+s)$$

$$= p_{r+1}(m+sr+s+1)$$

Adding both sides by $p_{n}(m+sr+s+r+1)$ $p_{x}(m) + p_{x}(m+r+1) + ...$

$$\begin{split} &+p_r(m+sr+s)+p_r(m+sr+s+r+1)\\ &=p_{r+1}(m+sr+s+1)+p_r(m+sr+s+r+1)\\ &=p_{r+1}\Big[m+(r+1)s+1\Big]+p_r\Big[m+(r+1)(s+1)\Big]\\ &=p_{r+1}\Big[m+(r+1)s+1\Big]+p_r\Big[m+(r+1)s+1+r\Big]\\ &=p_{r+1}\Big[m+(r+1)(s+1)+1\Big] \end{split}$$

It is true for t = s + 1

There fore our statement is true for all $t \in N$ Hence

$$p_r(m) + p_r(m+r+1) + ... + p_r(m+tr+t)$$

$$= p_{r+1}(m+tr+t)$$
 when $\left\lceil \frac{m}{r} \right\rceil = 1$

Corollary 11.1: Prove that

$$p_r(r) + p_r(2r+1) + ... + p_r [nr + (n-1)]$$

= $p_{r+1}[n(r+1)]$

Proof:

From theorem 11

$$p_r(m) + p_r(m+r+1) + ... + p_r(m+tr+t)$$

$$= p_{r+1}(m+tr+t)$$
 when $\left[\frac{m}{r}\right] = 1$

Put m = r and

$$p_r(r) + p_r(2r+1) + ... + p_r [nr + (n-1)]$$

= $p_{r+1} [n(r+1)]$

ACKNOWLEDGEMENT

We would like to express our thanks to referees for valuable comments that improved the paper.

REFERENCES

- [1]. George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Vol. 2, Applications, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
- [2]. G. E. Andrews and F. G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), 167–171.
- [3]. G. E. Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math., to appear.
- [4]. G. E. Andrews and F. G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), 167–171.
- [5]. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, NewYork, 1976.
- [6]. A. O. L. Atkin and F. G. Garvan, Relations between the ranks and cranks of partitions, Ramanujan J. 7 (2003),343-366.
- [7]. K. Bringmann, F. G. Garvan and K. Mahlburg Partition statistics and quasiweak Maass forms, Internat. Math.Res. Notices, to appear.
- [8]. K. Bringmann and K. Ono, Dyson's ranks and Maass forms, Ann. of Math., to appear.
- [9]. K. S. Chua, Explicit congruences for the partition function modulo every prime, Arch. Math. (Basel) 81 (2003).
- [10]. F. J. Dyson, "Selected papers of Freeman Dyson with commentary," Amer. Math. Soc., Providence, RI, 1996.
- [11]. F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10–15.
- [12]. F. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), 1-17.
- [13]. G. Gasper, M. Rahman, hypergeometric series, Encyclopedia Mathematics and its

applications v.35, Cambridge, 1990.

[14]. K.Hanuma Reddy: Note on convex polygons, proc of Joint Conference on Information

Sciences 2007, USA, 1691-1697. [15]. G. H. Hardy and EM. Wright "An Introduction to the Theory of Numbers," Oxford Univ. Press, London, 1979.

[16]. S. Ramanujan, "The lost notebook and other unpublished papers," Springer-Verlag, Berlin, 1988.